JNIT G4	184	Module 1	4	4.1.2	Collis	sions
<u>Can</u>	dida	tes should be able	<u>e to</u> :			
•	51	ate the principle c	of conser	vation	of momentum.	
•		ply the principle o oblems when bodie				o solve
•	De	fine a perfectly e	elastic col	llision	and an inelast ic	c collision
٠	C0	plain that whilst th nserved in the inte kinetic energy use	eraction	betwee	•	•
CO	NSER	VATION OF MO.	MENTUN	И		
		PRINCIPLE OF C			I OF MOMEN	тим
	THE Vhen EMA		ONSERV,	ATION	OTAL MOMEN	VTUM
	THE Vhen EMA	PRINCIPLE OF Co bodies in a system INS CONSTANT	ONSERV,	ATION	OTAL MOMEN	VTUM
	THE Vhen EMA	PRINCIPLE OF Co bodies in a system INS CONSTANT stem.	ONSERV, interact,	ATION , the <u>T</u> I no ext	OTAL MOMEN	VTUM
	THE When EMA he sy	PRINCIPLE OF Co bodies in a system INS CONSTANT stem. FOR A COLLISION	ONSERV, interact, provided	ATION , the <u>T</u> I no ext	OTAL MOMEN	VTUM
	THE When EMA he sy	PRINCIPLE OF Co bodies in a system INS CONSTANT stem. FOR A COLLISION momentum before co	ONSERV, interact, provided	ATION , the <u>T</u> I no ext	OTAL MOMEI Ternal force ac	VTUM ts on

The principle of conservation of momentum is deduced from **NEWTON'S second and third laws**.

- If two bodies collide, then by **NEWTON III** each body exerts an equal and opposite force (F) on the other.
- Since force (F) acts on each body for the same time (Δt), the two bodies will experience an equal and opposite impulse (F Δt).
- Each body therefore experiences an equal and opposite change of momentum, which means that the total change of momentum of the two bodies is zero (i.e. TOTAL MOMENTUM REMAINS CONSTANT).
- The principle of conservation of momentum is universally true and it applies as much to the motion of galaxies as to the interaction of sub-atomic particles.

	7			
RESULTS	More of cont 1	. - 「	kg	
	Mass of cart 1,			
	Mass of cart 2,	m ₂ =	kg	
Speed o	f cart 1 before collision,	v ₁ =	m s⁻¹	
Speed of car	rts (1 + 2) after collision	, v 2 =	m <i>s</i> ⁻¹	
CALCULA	TIONS			
ntum before	$collision = m_1 v_1 =$	×	=	kg m s⁻¹
ntum after col	lision = $(m_1 + m_2) v_2 =$	×	=	kg m s⁻¹
	SOME QU	ESTIONS		
•	Is the total momentum the total momentum b	after the col efore the colli	sion ?	
•	Is the total momentum	after the col efore the colli	sion ?	, ,
• •	Is the total momentum the total momentum b Has the principle of co	after the col efore the colli nservation of act on the sys	sion ? momentum beer tem of colliding	, ,
• •	Is the total momentum the total momentum b Has the principle of co verified ? Did any external force	after the col efore the colli nservation of act on the sys	sion ? momentum beer tem of colliding	
• •	Is the total momentum the total momentum b Has the principle of co verified ? Did any external force	after the col efore the colli nservation of act on the sys	sion ? momentum beer tem of colliding	,

JNIT 6484	Module 1	4.1.2	Collisions	•	PRACTICE QUESTIONS (2)	5
	In practice all collisions (i.e. some of the initial energy forms). Car CRUMPLE ZONES specifically designed to a collision more INELA and so absorb the kinet energy in a crash. The same thinking is us the design of MOTORY CRASH BARRIERS. A PERFECTLY INELA the initial kinetic energy forms. KINETIC ENERG A close approximation t is that which would occ equal mass moving tow collision, all the kinetic sound energy, heat energy So the pieces 'splat' int dough, heat up and com	kinetic energy is t are make STIC fic ed in (Ay STIC collision by is transferr GY AFTER CO Collision by is transferr GY AFTER CO Collision by is transferr Collision by a PERFECTLY for a PERF	ransferred to other When the the second sec	2	 In a school experiment, a cart of mass 2.5 kg moving with a veloc of 0.5 m s⁻¹ collides with a second, stationary cart of mass 3.0 k The veloro fastenings attached to the cart ends causes them to s Together on impact and they move off with a common velocity of 0.227 m s⁻¹. (a) Show that momentum is conserved in this collision. (b) Calculate the kinetic energy before and after the collision. (c) Explain whether the collision is elastic or inelastic. A tennis ball of mass 0.06 kg is dropped from a height of 1.5 m above a hard surface and it rebounds to a height of 1.0 m above the surface. (a) Calculate the kinetic energy lost on impact with the surface. (b) Explain whether this collision is elastic or inelastic.	g.

FXA © 2008

- (c) Explain whether this collision is elastic or inelastic.
- (b) The kinetic energy lost as a result of the collision.

FXA @ 2008

UNIT 6484	Module 1	4.1.2	Collisions	2 This question is about the interactions between three identical,		
HOMEW	ORK QUESTIONS			perfectly elastic, solid cubes.		
1 (a) (i) (ii)	Define the momentum of A body, initially at rest	t, explodes in ass m 1 has a ng the princip expression fo	v_1/v_2 .	(a) Fig 1 shows three numbered cubes, each of mass m , placed in contact on a frictionless , horizontal surface. A steady horizon force P is applied to the end surface of cube 1 .	onta	
	cays, emitting an alpha p a kinetic energy of 1.2 ;		ass 6.7 x 10 ⁻²⁷ kg	(i) Show that the acceleration of cube 3 is P/3m .		
	Show that the speed of 2 \times 10 ⁶ m s ⁻¹ . Calculate the momentum			(ii) Write down an expression for the <i>resultant force F</i> 3 on cube 3.		
(iii) Hence find the speed	of the recoi	ling nucleus.	(iii) Write down expressions in terms of ${\it P}$ for :		
	re the decay described i n below.	in (b) The nuc	cleus is at point P as	1. The <i>acceleration, a</i> ₂ of cube 2.		
				2. The <i>resultant force,</i> F_2 on cube 2.		
		• ^P				
				(iv) Hence write down an expression for the magnitude of th <i>force</i> applied by :	1e	
	Place a small cross at a alpha particle 8.0 × 10	•	tion, to full scale , of the ission.	1. Cube 3 on cube 2, <i>F32.</i>		
) Indicate with an arrow movement of the rec) Estimate how far the 8.0 × 10 ⁻⁹ s.	coiling nucleur recoiling nucl	s . eus has moved in	2. Cube 1 on cube 2, <i>F₁₂.</i>		
		Physics - Modu	le 2824 - June 2004)	FXA ©	,	

